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Absn'act--New models are suggested for the transition from annular to intermittent flow and from 
dispersed bubble flow for two-phase gas-liquid flow in inclined pipes. The models display a smooth 
change in mechanisms as the pipe inclination varies over the whole range of upward and downward 
inclinations, The results of the models compare favorably with experimental data. 

INTRODUCTION 

The prediction of flow patterns in gas-liquid flow in pipes is one of the most important 
problems in two-phase flow. Traditionally, the approach that has been used to treat this 
problem was to correlate the data and to plot the results on a "flow-pattern map". A wide 
variety of maps with different coordinate systems have been published. 

Recently, efforts were directed towards the development of physical models that allow 
the analytical prediction of the flow patterns and the transition boundaries. Such an 
approach was used by Taitel & Dukler (1976) for horizontal and slightly inclined flow, 
Taitei et al. (1980) and Mishima & Ishii (1981) for the case of vertical upward flow, and 
Barnea et al. (1982a) for vertical downward flow. 

Physical models for flow-pattern transitions in inclined pipes were presented by Barnea 
et al. (1982b) for downward inclinations and Barnea et al. (1985) for upward inclinations. 
The approach taken was to extend and modify the vertical models to include steep 
inclinations, while the shallow inclinations were treated via an extension of the horizontal 
case. 

In the development of predictive models for flow-pattern transition boundaries the 
objective should be to propose models that will apply to all angles of inclination, i.e. that 
the effect of inclination will be incorporated in the model in such a way that the same model 
will apply for horizontal, vertical upward, vertical downward and all angles of inclination. 

So far this aim has not been fully achieved in the models presented by Barnea et al. 
(1982b, 1985). The main disadvantage in these models arises when dealing with the 
transition from annular to intermittent flow and the transition from the dispersed bubble 
flow. These two transition boundaries exist in the whole range of inclinations (although 
not necessarily at the same location on the flow-pattern map), but different mechanisms 
were suggested for these two boundaries in the horizontal (Taitel & Dukler 1976) and 
vertical (Taitel et al. 1980; Barnea et al. 1982a) cases. 

Transition to annular flow according to the "horizontal" model of Taitel & Dukler 
(1976), requires that stratified flow becomes unstable while the liquicl level is low enough 
to form an annular film rather than a complete bridge that leads to slug flow. For the 
upward vertical case, Taitel et al. (1980) suggested a totally different mechanism for the 
transition to annular flow. In this case the gas velocity must be large enough to lift the 
largest stable drop in order to maintain annular flow. The "downward vertical" model, 
presented by Barnea et al. (1982a), adopted the same idea as the "horizontal" model and 
suggests that the transition from annular to intermittent flow occurs when the liquid 
holdup is large enough to cause a blockage of the gas core. 

The transition to dispersed bubbles was determined from a balance between breakage 
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forces due to turbulence and coalescence forces due to gravity in the "horizontal" model 
or due to surface tension in the "vertical" models. 

The effect of shallow inclinations from the horizontal on the transitions to dispersed 
bubble and annular flows has already been incorporated in the "horizontal" model by 
Taitel & Dukler (1976). In a similar way, the mechanisms presented in the "vertical'" 
models were modified for slight changes from the vertical (Barnea et al. 1982b, 1985). Since 
the transition mechanisms for the horizontal and shallow inclinations differ from those 
of vertical and steep inclinations, it is necessary to choose the appropriate mechanism in 
intermediate angles of inclination, and thus to determine the applicability of the shallow 
and steep-inclination models. 

The terms shallow and steep inclination may thus apply to different inclination angles 
for each transition boundary. In addition the "switch" between the two mechanisms was 
based on experimental results in an air-water system. 

In this work new models are suggested for the transition from annular to intermittent 
flow and from dispersed bubble flow, in which the effect of inclination is integratively 
incorporated in the models. In fact, the same transition criteria apply for the whole range 
of inclinations and the problem of switching between two different mechanisms and 
selecting the applicable one, is thus eliminated. 

TRANSITION FROM ANNULAR TO INTERMITTENT FLOW 

In annular flow the gas flows along the center of the tube and the liquid flows as a film 
around the tube walls. Transition from annular to intermittent flow will occur when this 
characteristic structure is destroyed by occasional blocking of the gas core by liquid lumps. 

Figure 1 shows the geometry of annular film flow in an inclined pipe. A force balance 
for steady annular flow gives: 

for the liquid film 

and 

for the gas core 

d p  _ TLSL + TiSi _ PLALg s in  ~ = 0 --ALT  [1] 

- A o  ~-~Pz - ~iSi - PoAog sin fl = 0, [2] 

¢- 

_/ 
Figure 1. Geometry of annular flow. 
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where ZL is the shear stress at the wall, T~ is the interfacial stress, A L and Ao are the 
cross-sectional areas occupied by the liquid and gas, respectively, SL and Si are the 
perimeters over which XL and t~ act, respectively, PL and Po are the liquid and gas densities, 
respectively, z is the axial coordinate, p is the static pressure, fl is the angle of inclination 
from the horizontal and g is the acceleration due to gravity. 

Equating the pressure drop in the two phases yields the following result: 

(l ,) 
~, S, ~ + ~ - g (PL --  Po) sin/Y --  ~L - -  = O, 

where fl is positive for upward flow and negative for downward flow. 
The shear stress ~L is related to the liquid average axial velocity UL by 

with the liquid/waU friction factor fL evaluated from 

[3] 

[4] 

where D L = 4AL/S L is the hydraulic diameter, VL is the liquid kinematic viscosity and CL 
and n are constants in the friction factor correlation. 

The film flow geometry is given in terms of the film thickness 6 and the tube diameter 
D: 

SL=nD, S i = l t ( D - 2 6 )  1 

AL=~(D6- -62 )  and A o = g - ~ - 6  . 
[6] 

Substituting in [3] and rearranging yields 

Zi----g(pL-- po) D sin fl (~'-- o~)(1 -- 2o~) + ~  C L O L  (Uts)2-" [ ( - ~ - - ~ ] ,  [7] 

where ULS is the liquid superficial velocity and o ~ the dimensionless film thickness 
(6~--6/D). 

In this work the following coefficients were used: CL = 0.046, n = 0.2 for a turbulent 
liquid film and CL = 16, n = 1.0 for laminar flow in the film. 

Equation [7] relates the interfacial shear ~i to the film thickness o ~ for a constant value 
of the liquid superficial velocity ULS. This relation for vertical upward flow is shown by 
the solid lines in figure 2 for different values of ULS. The interfacial shear z~ is provided 
by the gas flow rate. The basic mechanisms which determine the interfacial shear are not 
fully understood and the available relationships are largely empirical. Wallis (1968) 
correlated a variety of data for annular cocurrent flow by the simple relation for the 
interfacial friction factor: 

f ----fG(1 + 300 6"), [81 

where fo is the friction factor in the absence of the film, namely 

fG = co ( UGsD~ -". [9] 
k v o /  

Thus, the equation 

Ti = :!fi Po (l -U~s2 ~')4 [10] 

yields the required relationship between the interfacial shear stress and the gas flow rate, 
where v G is the gas kinematic viscosity and UGS is the superficial gas velocity. 
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Figure 2. Steady-state solutions for vertical annular  flow. Air-water ,  0.1 MPa, 25°C, 2.5 cm dia. 

- - ,  [ 7 ] ; - - - ,  [10]; . . . .  , I12]. 

This independent expression for ~ is given by the broken curves in figure 2. Any 
intersection of the solid and the broken curves yields a steady-state solution for annular 
flow at a particular flow rate of liquid and gas. 

As mentioned above, transition from annular to intermittent flow occurs when the gas 
core is blocked at any location by the liquid. Blockage of the core may result from two 
possible mechanisms: 

(a) instability of annular flow that prevents a stable annular configuration; 
(b) the liquid film being large enough to cause spontaneous blockage as a result 

of axial transfer of liquid in the film. 

The stability criterion [mechanism (a)] 

In figure 2, curves of fi [f~ = Xi/(PL -- P6)gD] vs ~ are presented for vertical upward fl0w. 
The solid lines are plots of [7] (for parametric values of Urs) which result from momentum 
balances, and the broken curves give the relationship between f~ and o r for different gas 
flow rates as dictated by [10]. The curves represented by the solid lines display a minimum. 
Barnea & Taitel (1985) showed that this minimum is associated with the change in the 
direction of the velocity profile in the film. The branch to the left of the minimum 
corresponds to stable steady-state solutions with positive velocity profiles (point A). The 
right-hand branch corresponds to solutions with a negative velocity profile near the wall 
(point B). Thus, solutions to the right of the minimum are unstable, the liquid near the 
wall that flows downwards accumulates at the pipe entrance causing a blockage of the air 
passage and transition to intermittent flow. Note that in the case of countercurrent flow 
this minimum is equivalent to the point of flow reversal (Taitel et ai. 1982; Barnea & Taitel 
1985). The point of intersection at the minimum represents the locus where transition from 
stable annular flow to intermittent flow occurs. 

For any given Urs, the film thickness at the minimum is obtained by differentiating [7] 
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with respect to o ~ and equating it to zero, which yields 

g (PL - -  PG) D sin fl[(1 -- 2~) 2 - 2(~" -- ~2)] 

__ I CLPL ~L (ULs)2-n  (~.__ O~-2) 3 J = 0. I1 l] 

A simultaneous solution of [7] and [10] with o e that satisfies [1 l] (~" = $'mi~) yields the value 
of UGs at the transition. The locus of the flow rate pairs at the minimum represents the 
condition of neutral stability where transition from annular to intermittent flow occurs. 

The spontaneous blockage criterion [mechanism (b)] 

Blockage of the gas core in annular flow may also occur when the supply of liquid in 
the film is large enough to provide the liquid needed to/naintain a liquid bridge. Owing 
to the presence of waves on the interface fluid is transferred axially from the wave trough 
to the wave crest. When sufficient liquid is accumulated at the crest the pipe is bridged 
and transition to intermittent flow occurs. 

Based on this mechanism, Barnea et al. (1982a) suggested that intermittent flow will 
develop when 

A L  = atL >10.5, [12] 

where A is the pipe cross-sectional area and R~ is the minimal liquid holdup within the 
formed liquid bridge that will allow competent blockage of the gas passage. This minimum 
value is related to the maximum bubble volumetric packing in the liquid slug and equals 
approx. 0.48 (Barnea & Brauner 1985). Lower values of R, will make slugging impossible 
due to the high gas void fraction. This value of R~ is not necessarily the actual equilibrium 
liquid holdup, R~, within the fully-developed slug near the transition boundary [the method 
for predicting this equilibrium value of P~ has been proposed by Barnea & Brauner (1985)]. 
Note, however that the minimal value of R~ in [12] is equal to the actual R~ on the 
annular-intermittent transition boundary in a very wide range of flow conditions. 

The combined criterion 
Consider, for example, stable annular flow as represented by point A in figure 2. 

Decreasing the gas flow rate while maintaining Uts constant causes the intersection points 
of the steady-state solutions to move along the stable branch on the solid curve towards 
higher values of the film thickness ~. If the minimum is reached before the condition of 
AL/A = 0.5 Rm is satisfied, transition to slug flow occurs owing to mechanism (a). There 
are, however, cases where the film thickness along the stable branch (before the minimum 
is reached) is large enough to cause blockage according to mechanism (b) (point C), and 
thus transition to slug flow occurs even before the condition of instability is reached. 

Referring to figure 2, it can be seen that as the liquid flow rate increases the location 
of the minimum is shifted to the right, namely towards higher values of ~. As a result, 
transition to slug flow at low liquid flow rates occurs owing to film instability [mechanism 
(a)], while at high values of Ut~ transition takes place due to a very high liquid holdup 
[mechanism (b)]. 

Effect of pipe inclination 
Curves of~i vs ~([7]) are shown in figure 3 for the whole range of pipe inclinations. When 

the pipe is declined from the vertical the minimum, which separates the stable and unstable 
branches, is shifted towards higher values of ~', and for high liquid flow rates the minimum 
is not seen at all. For the case of horizontal and downward inclinations, [7] does not display 
any minimum for all values of ULS, the solution is always stable, and thus transition from 
annular to slug flow occurs only according to mechanism (b) in the whole range of flow 
rates. 
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Figure 3. Effect of inclination on the stable branch. Air-water, 0.1 MPa, 25°C, 2.5 cm dia. 

In vertical upward flow the two mechanisms (a) and (b) play a role in the transition to 
slug flow. As the pipe is declined from the vertical the transition due to the film instability 
[transition (a)] is confined to very low liquid flow rates until it disappears at horizontal 
and downward flow, where the only mechanism that determines the transition to slug flow 
is the blockage mechanism (b). 

The two mechanisms (a) and (b) mentioned above are both based on the characteristic 
film structure of annular flow. A smooth change in mechanisms is obtained as the pipe 
inclination varies over all possible angles and thus the transition from annular to 
intermittent flow is applicable in the whole range of inclinations. 

Transition boundaries between annular and intermittent flow based on the above 
concept are plotted in figure 4 and show good agreement with experimental data taken 
for air-water in a 2.5 cm dia pipe. Note that the transition lines may be terminated by the 
stratified/nonstratified transition line, which can be predicted by the Taitel & Dukler (1976) 
and Barnea et al. (1982b) methods. Thus, the above-proposed model is applicable only 
outside the range of stable stratified flow. 

The predicted transition boundaries are also compared with data for a Freon-ll3 
vapor-liquid system (Weisman et al. 1979; Weisman & Kang 1981). Figure 5 shows the 
results for three pipe positions: horizontal, 45 ° upward inclination and vertical upward 
flow. The theoretical transition lines are in good agreement with the experimental data for 
45 ° and 90 ° upward inclination. The discrepancy observed for the case of fl = 0 (the dotted 
region) is probably related to the wavy annular pattern (Barnea et al. 1980) which may 
be easily interpreted as stratified wavy flow or slug flow. Note also, that Weisman's data 
for air-water show a similar discrepancy from the present model as well as from Shoham's 
(1982) experimental data (figure 4, ~ = 0). Clearly this conflict invites future clarification 
of this particular transition line in horizontal and slightly inclined pipes. 
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, Taitel & Dukler model (1976); data (Shoham 1982): A annular and • wavy annular (A); 
• slug and ~ churn (I). 

The dimensionless form of  the transition criteria 

For convenience,  the aforementioned procedure can be written in general dimensionless 
form. The solution for the steady-state liquid holdup ct L (or film thickness) in annular flow, 
given by [7] and [10], yields 

1 + 750t L 1 
Y = X 2, [13] 

(1 - ~L)~L ~ 
where 

and 

(d,,) 
X . 2 =  D" \ VL ) 2 = ~ LS 

4CG (UGsD~-mpGUGs (dp) 
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N o t e  also that 
04. = 4 (~ - -  6":) 

and I [15] 
~G = 1 -- at = (1 -- 2C~) 2. 

Equation [11], which yields the condition for the minimum f~ along a line of  constant 
ULS, can be written in the form 

2 - ~ o t  L X2" [16] 
Y = (1' - 

The transition boundaries can thus be plotted on a generalized map using X and Y as 
dimensionless coordinates (figure 6). Simultaneous solution of  [13] and [16] yields the locus 
of  (X, Y) pairs [line (a)] along the neutral stability curve [transition mechanism (a)]. The 
region below this curve is in stable annular flow, while the region above it yields unstable 
conditions or intermittent flow. 

Equation [13], with the value of  ~L = 0.5R,m yields the condition where blockage occurs 
[mechanism (b)]. Equation [13] is plotted for a constant value of  ~L = 0.24 ( R ~  = 0.48) 
within the stable zone [line (b)]. The region to the left of  curve (b) corresponds to annular 
flow. 

T R A N S I T I O N  F R O M  D I S P E R S E D  B U B B L E S  

The mechanism of  transition from dispersed bubbles to slug flow suggested for vertical 
flows (Taitel et al. 1980; Barnea et al. 1982a) is based on the concept that turbulent forces 



TRANSITION FROM ANNULAR AND DISPERSED BUBBLE FLOW 741 

overcome interfacial tension to dispersed the gas phase into small bubbles. Based on 
Hinze's (1955) results for the characteristic size of bubbles in a dispersion at low 
concentration of the dispersed phase, and Calderbank's (1958) investigation on the effect 
of the gas holdup on the resulting bubble size, Barnea et al. (1982a) suggested the following 
relation for the stable diameter of the dispersed bubbles: 

d ~  = (0.725 + 4.15 0t½) E -~, [17] 

where ct is the dispersed bubbles void fraction (0t = UGs/UM) and E is the rate of energy 
dissipation per unit mass• For turbulent pipe flow, 

2fM U~, [181 
E = - -  D - 

where UM is the mixture velocity (UM = ULS + UGS) andfM is the friction factor based on 
the mixture velocity. 

Equation [17] is applicable only to the dispersed bubble regime. In this regime the bubble 
size is small enough to prevent deformation, and thus to prevent agglomeration and 
coalescence. When the bubble size is large enough to cause distortion from the spherical 
shape, coalescence is enchanced and transition from dispersed bubble flow takes place. 
This critical bubble size was estimated as the one above which the bubble is deformed and 
the rise velocity is constant (Barnea et  al. 1982a): 

I 0"4a 1½ . [19] dcD = 2 (PL -- PG)g 

Substituting dcD for dm,x in [17] yields the transition boundary from the dispersed bubble 
regime. 

For horizontal and slightly inclined flow Taitel & Dukler (1976) suggested that the 
transition to dispersed bubble flow takes place when the turbulent fluctuations overcome 
the buoyant forces. The turbulent and buoyant forces were evaluated per unit length of 
the gas and liquid in stratified flow. This mechanism predicts quite well the transition to 
dispersed bubble flow in horizontal and slightly inclined pipes, but fails to predict this 
transition when the angle of inclination deviates considerably from the horizontal. 

In this work the effect of buoyancy is revised to act on a single bubble. It is suggested 
that transition from dispersed bubble flow takes place either as a result of: 

(a) Agglomeration of large distorted bubbles 
or 
(b) migration of bubbles, due to buoyancy, to the upper part of the pipe 

(creaming). 

The transition that corresponds to (a) is obtained when dmax in [17] is equated with dcD 
in [19]. Mechanism (b) takes place when the critical bubble size dcB is large enough to cause 
creaming. 

This critical bubble size can be estimated as follows. Consider fully dispersed bubble flow 
in an inclined pipe (figure 7). The forces that act on a dispersed bubble are the buoyancy 
which tends to lift the dispersed bubble to the upper part of the pipe and enhance the 
transition to intermittent flow, and the turbulence which tends to disperse the bubble and 
to maintain the dispersed bubble pattern. The balance between these forces yields the 
critical bubble diameter for "creaming". 

The buoyancy component in the radial direction is 

~zd 3 
FB = (PL -- PG)g COS fl 6 " [20] 
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The force acting due to turbulent fluctuations (Levich 1962) is 

FT I ,2 red2 [21] 
= 2PLY ---4"-' 

where v' is the radial velocity fluctuations whose r.m.s, is estimated to be approximately 
equal to the friction velocity, U,. Thus, 

Migration of dispersed bubbles towards the upper pipe wall takes place when 

o r  

d > d c s =  
3 PL fMU~ 

8 ( P L  - -  PG)g COSfl" 

[23] 

In order to maintain dispersed bubble flow, neither distortion of the bubble, nor 
creaming should take place. It means that dmax should be less then dcD as well as dcs. Thus 
the bubble diameter a ~  [17] that determines transition is the smallest of dcD or tics. The 
transition line, [17] with d ~  = dco, is shown by the solid line in figure 8, while [17] with 
dmax = dcs is marked by the broken curve. The combined transition boundary is shown by 
the thicker sections of the curves (the outer envelope). Note that dcs is smallest in the 
horizontal and increases as the angle of inclination increases. For an air-water system dcs 
in horizontal and moderate inclincations is smaller than dcD, yielding transitions at higher 
mixture velocities than those predicted by dcD, while for steep inclinations and vertical 
flows dco is smaller and the effect of buoyancy on the transition from dispersed bubbles 
is ignored. Note that this transition boundary [17] is valid for gas void fractions <0.52. 
At ct = 0.52 the maximum volumetric packing density of the bubbles is reached and 
coalescence to intermittent flow occurs even at high turbulence levels. The transition curve 
that characterizes this condition is 

1 -c t  
ULS = UGs , [24] 

where at = 0.52 (Taitel et al. 1980). The theoretical transition lines from dispersed bubble 
flow are shown in figure 8 for the whole range of pipe inclinations and the agreement with 
the experimental results is satisfactory. 

SUMMARY AND CONCLUSIONS 

Unified models which incorporate the effect of the angle of inclination are presented for 
the transition from annular flow and from dispersed bubble flow. These two afore- 
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mentioned transition boundaries were treated differently in the past for near-vertical and 
near-horizontal inclinations and the applicability of those models for intermediate angles 
was questionable. 

The models proposed in the present work use the same approach for the whole range 
of pipe inclinations. The transition from dispersed bubbles is given by [17] where dm~x is 
taken as smallest between dcD [19] and dcB [23] and by [24] for ct > 0.52. 

The transition from annular flow is given by a generalized map (figure 6) which includes 
the effect of inclination. The transition lines are given in terms of the dimensionless 
coordinates X and Y (defined by [14]). Line (a) corresponds to the instability mechanism 
and line (b) to the blockage mechanism. Note that the annular/intermittent transition 
boundary may be terminated by the stratified/nonstratified transition (figure 4). Therefore 
the region below (a) and to the left of (b) (figure 6) may also contain stratified flow, 
primarily for horizontal and downward flow. Thus, the predicted annular/intermittent 
boundary is applicable only outside the range of stable stratified flow (Taitel & Dukler 
1976; Barnea et al. 1982b). 

Acknowledgement--The author wishes to thank Professor Y. Taitel for the many useful 
and illuminating discussions. 
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